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FOREWORD

Tis docwment is one of sixteen sections that comprise the final
report prepared by the Minneapolis-Honeywell Regulator Company for the
National Aeronautics and Space Administration under contract NASw-563.
The report is issued in the following sixteen sections to facilitate
updating as progress warrants:

1541-TR 1

1541-TR 2

1541-TR 3
1541-TR &4
1541-TR 5

1541-TR 6

1541-TR T
1541-TR 8
1541-TR 9

1541-TR 10

1541-TR 11

1541-TR 12

1541-TR 13

1541-TR 14

15L41-TR 15

1541-TR 16

Summary

Control of Plants Whose Representation Contains Derivatives
of the Control Variable

Modes of Finite Response Time Control
A Sufficient Condition in Optimal Control
Time Optimal Control of Linear Recurrence Systems

Time-Optimal Bounded Phase Coordinate Control of Linear
Recurrence Systems

Penalty Functions and Bounded Phase Coordinate Control
Linear Programming and Bounded Phase Coordinate Control
Time Optimal Control with Amplitude and Rate Limited Controls

A Concise Formulation of a Bounded Phase Coordinate Control
Problem as a Problem in the Calculus of Variations

A Note on System Truncation

State Determination for a Flexible Vehicle Without a Mode
Shape Requirement

An Application of the Quadratic Penalty Function Criterion
to the Determination of a Linear Control for a Flexible Vehicle

Minimum Disturbance Effects Control of Linear Systems with
Linear Controllers

An Alternate Derivation and Interpretation of the Drift-Minimum
Principle

A Minimax Control for a Plant SubJjected to a Known Load Disturbance

Section 1 (1541-TR 1) provides the motivation for the study efforts

ant objectively discusses the significance of the results obtained.

The

results of inconclusive and/or unsuccessful investigations are presented.
Linear programming is reviewed in detail adequate for sections 6, 8, and 16.

It is shown in section 2 that the purely formal procedure for synthe-
sizing an optimum bang-bang controller for a plant whose representation
contains derivatives of the control variable yields a correct result.
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In section 3 it 1s shown that the problem of controlling m componsnts
(1 <m< n), of the state vector for an n-th order linear conciant coeilTicient
plant, to zero in finite time can be reformulated as a probiem of controlling
a single component.

Section 4 shows Pontriagin's Maximum Principle is often a sufficient
condition for ptimal control of linear plants.

Section 5 develops an algorithm for computing the time optimal control
functions for plants represented by linear recurrence equations. Steering
may be to convex target sets defined by quadratic forms.

In section 6 it is shown that linear inequality phase constraints
can be transformed into similar constraints on the control variables.
Methods for finding controls are discussed.

Existence of and approximations to optimal bounded phase coordinate
controls by use of penalty functions are discussed in section T.

In section 8 a maximum principle is proven for time-optimal control
with bounded phase constraints. An existence theorem is proven. The
problem solution is reduced to linear programming.

A backing-out-of-the-origin procedure for obtaining trajectories for
time-optimal control with amplitude and rate limited control variables is
presented in section 9.

Section 10 presents a reformulation of a time-optimal bounded phase
coordinate problem into a standard calculus of variations problem.

A mathematical method for assessing the approximation of a system by
a lower order representation is presented in section 1l.

Section 12 presents a method for determination of the state of a
flexible vehicle that does not require mode shape information.

The quadratic penalty function criterion is applied in section 13 to
develop a linear control law for a flexible rocket booster.

In section 14 a method for feedback control synthesis for minimum load
disturbance effects is derived. Examples are presented.

Section 15 shows that a linear fixed gain controller for a linear
constant coefficient plant may yield a certain type of invariance to
disturbances. Conditions for obtaining such invariance are derived using
the concept of complete controllability. The drift minimum condition is
obtained as a specific example.

In section 16 linear prograrming is used to determine a control function
that minimizes the effects of a known load disturbance.
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AN ALTERNATE DERIVATION AND INTERPRETATION
OF THE DRIFT-MINIMUM PRINCIPLE*

By C. A. Harvey

ABSTRACT 55 oS
The design of a control system for a plant with disturbance
inputs is considered. The motion of the plant is assumed to be
described by n linear, first-order, constant-coefficient differential
equations forced with a scalar control variable and a scalar
disturbance. A linear, fixed-gain controller is assumed. In some
cases it is possible to choose the gains in such a manner that a
certain type of invariance to disturbances is obtained for the
resulting controlled system. Conditions for obtaining such in-

variance are derived using the concept of complete controllability.

The Drift-Minimum condition is obtained as a specific example.
At o

INTRODUCTION

The system considered can be written in the form of the vector

differential equation
x = Ax + bu(x,g) + eg (1)

where x is an n-vector representing the state of the system, dot
represents differentiation with respect to the independent variable
t, A is a constant nxn matrix, b and e are constant n-vectors,
u(x,g) is a scalar feedback control, and g is a scalar disturbance

considered to be a function of t only. The controller, u(x,g) is

* Prepared under contract NASw-563 for the NABA.

Senior Research Scientist, Minneapolis-Honeywell Reg. Co.,
Minneapolis, Minnesota
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assumed to be given by

n
u(x,g) = 2 k;x; + k48 (2)

for some set of n+l constants, k i=1,2,...,n+tl. Denoting by

i’

k the vector with components ki’ i=1,2,...,ntl, it is possible to

substitute for u(x,g) in (1) the right-hand side of (2) to obtain
x = A(k)x + e(k)g (3)

th

where the thh element of A(k) is a + bikj and the 1 element

iJ
of e(k) is e, + b,k

i i"n+1°

For certain choices of the vector k, there may be some linear
combination of the components of x that 1s completely insensitive
to the disturbance. Such controllers are called invariant
controllers (reference 3). The concept of complete controllability
(reference 2) is related to the sensitivity of a system to a control
variable. It is shown 1n the following paragraph that invariance
to the disturbance is obtained if and only if the system (3) is not
completely controllable when g is considered as the control variable.
As an explicit example the Drift-Minimum condition (reference 1)
is derived as a type of invariance condition. That is, the Drift-

Minimum condition insures a certain insensitivity to disturbances.

COMPLETE CONTROLLABILITY AND INVARIANCE
For equation (3) the concept of complete controllability can
be considered with respect to the disturbance g(t) if g(t) is thought
of as a control. The condition for the system represented by (3)
to be completely controllable with respect to g(t) is that the matrix
with columns e(k), A(k)e(k),...,[A(k)]n°le(k) be non-singular, i.e.
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detle(x), Alk)e(k),...,[A(k)]" T e(x)] # O. (4)

If (3) is completely controllable with respect to g(t) then, for
arbitrary n-vectors x° and xl and arbitrary real numbers to and tl,
there exists a g(t) depending on xo,xl,to, and t; defined on [to,tl]
such that the response corresponding to g(t) and the initial
condition x(to) = x° satisfies x(tl) = x*. This means, loosely,
that no linear combination of components of x(t) is insensitive
(invariant) to disturbances g(t). Conversely, if the system (3)
is not completely controllable with respect to g(t), i.e., (4) does
not hold, then some linear combination of the components of x(t) is
insensitive (invariant) to all disturbances g(t).

The theory of invariance also deals with the insensitivity of
a system to disturbances. The system represented by (3) would be
completely invariant if e(k) = O. Then, clearly the system is in-
variant with respect to all disturbances g(t). In general this is
impossible to attain since e(k) has n components and the only
parameter available to the control designer which appears in e(k)
is kn+l’ Selective invariance is obtained when some linear
combinations of the components of x(t) are invariant relative to
g(t). It is clear that invariance can only be attained when (4)

is violated. Thus to find invariant controllers it suffices to

find solutions of the following equation
detfe(k), A(k)e(k),...,[A(k) " te(k)] = 0 (5)

In the general case, equation (5) involves all the gains ki’
i=1,2,...,ntl. Hence, in general, equation (5) may be satisfied

with some freedom of choice of certain of the ki to achieve adequate
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control of the total system. However, in practice this may not be

the case.

One important point to be noted is that, if equation (5) is

satisfied, there is a linear combination of the components of x(t)

which is lnvariant. This linear combination can be found, but

determining its physical meaning may be difficult.

EXAMPLE

The example to be considered is concerned with the control of

a rigid vehicle. The Drift-Minimum control mode will be obtained

as a selective invariant controller for a space vehicle. The

notation and equations of motion are from reference 1. Also a

brief derivation of the drift-minimum condition is given based upon

reference 1,

List of Symbols

F

X
N
R

3

Thrust force

Axial air force

Air force perpendicular to long axis of vehicle

Control force perpendicular to long axis of missile

Mass of vehicle

Specific aerodynamic restoring torque

Specific control torque

Magnitude of standard velocity of vehicle

Wind velocity magnitude

Linear acceleration of center of gravity of vehicle perpendicular

to standard path
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Ne

Velocity of center of gravity of vehicle perpendicular to
standard path

T Linear acceleration of center of gravity of vehicle
perpendicular to long axis of vehicle

a Local linear acceleration at a vehicle station perpendicular
to long axis of vehicle.

a Angle of attack

B Swivel motor deflection or vane deflectlion

¢ Attitude angle

aw Wind angle, between flow and standard path

a, Attitude displacement gain

aq Attitude rate gain

a, Attitude acceleration gain

bo Angle of attack gain

85 Local lateral acceleration gain
CG Location of center of gravity
CM Location of accelerometer
others explained at place of occurrence
Superscripts

dot Differentiation with respect to time

prime Differentiation with respect to angle

The idealized, linearized equations of motion are:
Lateral Path Motion:

p-EXy N, Ry (6)

Angular Motilon:
¢ =-cpa=-c, B (7)



Angular Relationship:

a-a, =¢- %-; a, g- (8)

The control equation has the form

B=a, o+ a; ¢+ b, a + g, ay (9)
e ————

In applications, the two terms
are mutually exclusive.

In the case when an accelerometer is used the control equation

can be modified by use of the following relations.

ay =T+ (Cy - Cg) ¢ (10)
a2 = ge (CM = CG) (ll)
.o N’ R’

T =i;-a +EE‘B (12)

Then equation (9) can be replaced by

4 - .s /
(-8, %—) B=a®+ a®+ad+ (g ffl—- + b )a (13)

To simplify notation let vy, = N’/m, ¥, = F-X/m and Y3 = R’ /m.
Using equations (8) and (13), a and P may be eliminated from

equations (6) and (7). The result is:

(1 + ase, - g273fé + alczé + [c1+02(ao+b°)+g2(c271-c173)]¢

(14)
= [cl+02bo + ge(czvl-clv3)] (z - w)/v
(1 - 8av3)z + (vy+by3) (Z-u)/v = a273$-+ a173¢
(15)

+ [(a°+bo"gey2)73'+~hf72]¢

The term (z-w)/v can be eliminated from equations (14) and (15)




resulting in the equation
[°1+°2bo + g2(0271-0173)]z = - [(1+a2c2)71 + (bo+a201)v3]¢( 6)
1

-31(0271-0173)é + [ (0271'0173) (8272-a°)+(01+02b°)72 ]¢

The quasi-steady state solutions for a, B and ¢ are defined as
the solutions which result if first and higher derivatives of these
variables are assumed to be zero. The constraint that there shall
be no lateral acceleration (z) on the center of gravity of the
vehicle for any steady state, ¢, has been designated as the
‘Drift-Minimum-Principle . Since in transient motion, where ¢
and 3 are of finite values, also transient non-zero values for'g
are to be expected, the claim for zero-drift cannot be made. From
(16) it is clear that this condition may be written down explicitly
as
(cpvy-c173) (By75-8,) + Yy(eq+e,b )=0 (17)

Now the equations of motion will be manipulated slightly and
complete controllability with respect to a. will be investigated.
The case of 85 = 0, that is when no accelerometer is present, will
be discussed first. Subsequently the case when bo = 0 will be
discussed.

Let Xy = ¢, X, = ¢ and X3 = z. When g, = 0, equations (14)

and (15) can then be written as the vector differential equation:

Xy 0 1 0 Xy 0

X5, = d,-c,a ~C8; -dI/v Xy + 14y | @ (18)
. | :

x3; dotYptYa8, Y33y -dz/% x5 d,
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where d1 = = cl:} c2bo and d2 =1i;ﬁ3bo. This is equivalent to
x = Bx + da, with
0 1 o | o |
B = d;-c,8, -c,ay —dl/v i and d =| d, %
d2+72+y3ao V33, -d2/v d, g

Before proceeding with the analysis of this system, the
equations will be written in the form discussed in the introductilon.
Equations (6) and (7) can be written using (8) in the form:

= AX + bu + eg

where u = 8, g = Q. 87 = a13 =85, = ay3y = o, a1, = 1, 857 = = ©95
a5y = - cl/V, az; ="y + Yy a3y = -71/V, b; =0, b, = -¢c,,
b3 = Y3 € = 0, ey = -cy, €3 = V;. Equation (9) can be written
(with g, = O and using (8)) as

u = klxl + k2x2 + k3x3 + kﬂ g
where kl = a5 + bo, k2 = a5, k3 = - bo/v and k) = bj. Then
equation (18) is of the form (3) with B = A(k) and d = e(k). It

should be noted in this case that the four gains kl’ k2, k3, k& are

not independent since they depend on the three gains ag, ay and bO‘

Now
_ - _ 2
4 | -d; (epay + 3=)
' i
a | ' c.a v,a.d d2
= - 2 24 = 2 2°1 _ '3%171 "2
Bd = dl(c + 3 )| and B34 = 1(dl 2ao+c2a1 + = - = )
a2 | 2v.a.d as
2 o 3%1% 2
- = d, +vy,+ - + =
Y3 v l_l( Yp+tV38,-Cp7381 =) >

The determinant of the matrix with columns d, Bd and B2d can be

easily computed and after simplification may be written:




(h

-

- choice of the free gains a
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2 - 32
det|d, Bd, B3| = -d% (v, d; + v3 a, d; + ¢, ag d,) (19)

From this equation it is clear that there are two conditions
under which the system fails to be completely controllable with
respect to the wind, namely: /dl = 0 or
Y, 4 + ag (73 d; + c, d2) =0 J ' (20)

It can be readily verified, using the definitions of dl’ d2,
Y, and Y3 that equation (20) is the same as equation (17) if
g, = 0. That is, equation (20) is the drift-minimum condition in
the case when 8, = 0. When this condition is satisfied the system
is not completely controllable, and hence there is some variable
(v), a linear combination of X1 Xp and x3, that is invariant with
respect to the wind. This variable, y, is explicitly

y = (4)7F lag(eyyy = oqv3)xy + dgx, - dyxg] (21)
and § = 0. Thus the drift-minimum condition 1is in fact the zero
y condition.

The other condition for which the system fails to be completely

controllable is d, = 0. If this condition holds it is clear from

1l
equation (18) that Xy = ¢ and Xy = ¢ are invariant with respect

to aw. In this case

2 T 7 %%:%1 T %1%

, . . V1% y301

and if x, and x, are initlally zero, X3 = oV (-x3 + w).
Here the behavior of x3 with respect to w 1s independent of the
o and a, since their values only influence
the invariant portion of the system.

For the case when the accelerometer is used, equations (14)
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and (15) can be written (with X)s Xgs X35 Yps Vps Y3 @S defined

above) as
xl 0 1 0 Xq }O ;
: 0 N
x2; = | -a,e7) -8,C,Y), . ix2 + !flg a, (22)
£ ! ’
: 2 - ‘
Lf@J Ttz Y3 Ty X3 Lng

where v, = (1 + aje, - g273)'1, £, = -vyley + gy(cnvy - c173)]
and f, = Yy lvy + a, (0271 - 0173)]. Equation (22) can be written
as x = Cx + fuw where the meanings of C and f are clear. Then the
determinant of the matrix with columns f, Cf, and C2f can be
computed. The result is

bt [£, cf, €20 = - £2 [y, + agvzwyfy + age,yf,) (23)
From this equation it is apparent that the two conditions for

which the system falls to be completely controllable with respect

to the wind are fl = 0 or

vofq + aoy3vafl + ao°274f2 =0 (24)
It can be readily verified that equation (24) is the same as
equation (17) with b, = 0. Thus in this case equation (24) is

the drift-minimum condition. At this point statements similar to

those made in the first case could be made.

CONCLUSIONS
For the type of system considered an explicit condition for
selective invariant controllers 1s obtained using the concept of

complete controllability. The Drift-Minimum controller is

obtained as a selective invariant controller in the example considered.
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